Abstract

Owing to its remarkable mechanical, electrical and thermal properties, graphene has been a hot area of composites research in the past decade, including the field of energetic materials. Graphene has been widely applied in enhancing the physical properties of energetic materials, such as solid composite propellants. Through the way of adding different forms of graphene into the matrix of solid propellants, their thermal decomposition performance can be effectively improved. In this paper, we reviewed the status and challenges of the application of graphene in the thermal decomposition of composite solid propellant. Moreover, the main preparation methods and material structures of graphene are reviewed. We can conclude that graphene and its derivatives can enhance the catalytic effect remarkably, which can be attributed to the large specific surface area of graphene that makes the uniformly dispersed catalyst particles and the more catalyst active sites. Meanwhile, graphene possesses the high thermal conductivity, making the rapider heat diffusion, which can promote the decomposition reactions of the energetic components in solid propellants. Graphene and catalyst work synergistically in their thermal decomposition. More than this, the main methods to improve the thermal decomposition of energetic components of composite propellants and their effects on decomposition temperature reduction are systematically summarized, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.