Abstract

Abstract Background Antimicrobial packaging is currently one of the emerging technologies being pursued to extend the shelf-life of food products. Polyamides (PA) are widely used in food packaging, principally in laminate constructions, where they are used alone or combined with other materials. PA can be surface-treated using UV, plasma and corona treatments to create active film surfaces for various industrial applications. Scope and Approach the object of this article was to review different surface treatment methods for the potential manufacture of smart packaging materials including antimicrobial application in particular and to review the necessary spectral characteristics deemed necessary to achieve this. Key Findings and Conclusions XPS and AFM methods are useful tools in the identification of film surface analysis. For UV treatment, different light sources, including lasers, can be applied to create antimicrobially-active packaging materials. UV-treated PA films possess antimicrobial properties and offer potential for industrial and medical packaging applications, however, the application of such packaging materials to foods needs some special consideration. Different plasma treatment methodologies can be used for modification of PA surfaces, followed by attachment of antimicrobial coatings which are very limited in literature. Surface studies have shown that plasma-treated PA surfaces possess spectral properties similar to those for UV-treated samples. Corona treatment, like UV and plasma treatments, induce the modification of functional groups on PA film surfaces. Corona treatment has the capacity to activate polymeric surfaces for adhesion of a variety of functional coatings and should be explored further in terms of creating special antimicrobial coatings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call