Abstract

To calculate the direction and rate of carbon dioxide gas (CO2) exchange between the ocean and atmosphere, it is critical to know the partial pressure of CO2 in surface seawater (pCO2(sw)). Over the last decade, a variety of data products of global monthly pCO2(sw) have been produced, primarily for the open ocean on 1° latitude by 1° longitude grids. More recently, monthly products of pCO2(sw) that are more finely spatially resolved in the coastal ocean have been made available. A remaining challenge in the development of pCO2(sw) products is the robust characterization of seasonal variability, especially in nearshore coastal environments. Here we present a monthly data product of pCO2(sw) at 0.25° latitude by 0.25° longitude resolution in the Northeast Pacific Ocean, centered around the California Current System (CCS). The data product (RFR-CCS; Sharp et al., 2021; https://doi.org/10.5281/zenodo.5523389) was created using the most recent (2021) version of the Surface Ocean CO2 Atlas (Bakker et al., 2016) from which pCO2(sw) observations were extracted and fit against a variety of satellite- and model-derived surface variables using a random forest regression (RFR) model. We validate RFR-CCS in multiple ways, including direct comparisons with observations from moored autonomous surface platforms, and find that the data product effectively captures seasonal pCO2(sw) cycles at nearshore mooring sites. This result is notable because alternative global products for the coastal ocean do not capture local variability effectively in this region. We briefly review the physical and biological processes — acting across a variety of spatial and temporal scales — that are responsible for the latitudinal and nearshore-to-offshore pCO2(sw) gradients seen in RFR-CCS reconstructions of pCO2(sw).

Highlights

  • The concentration of carbon dioxide gas (CO2) in Earth’s atmosphere has rapidly increased from about 280 parts per million in 1750 to over 400 parts per million today (Joos and Spahni, 2008; Dlugokencky and Tans, 2019)

  • 85 Here, we present a reconstruction of pCO2(sw) (1998–2020) in a broad region of the Northeast Pacific (NEP) that includes the California Current System (CCS), surrounding open-ocean regions, and the highly variable continental shelf of the North American west coast spanning from southern Alaska to Baja California

  • RFR-CCS was constructed from pCO2(sw) observations in the Surface Ocean CO2 Atlas version 2021 (Bakker et al, 2016), which were related to predictor variables (Table 1) using a random forest regression approach

Read more

Summary

Introduction

The concentration of carbon dioxide gas (CO2) in Earth’s atmosphere has rapidly increased from about 280 parts per million in 1750 to over 400 parts per million today (Joos and Spahni, 2008; Dlugokencky and Tans, 2019). This rise in CO2 concentration is a direct result of human activities such as fossil fuel combustion, deforestation, and agriculture (Ciais et al, 30 2014; Friedlingstein et al, 2020). A portion of anthropogenic CO2 (~25%) dissolves directly into the ocean (Friedlingstein et al, 2020), mitigating its warming potential. A primary method for calculating the amount of CO2 transferred to the ocean requires knowing the difference between the partial pressure of CO2 in the atmosphere and surface seawater

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.