Abstract

With the rise in the demand for electric vehicles, the need for a reliable charging infrastructure increases to accommodate the rapid public adoption of this type of transportation. Simultaneously, local electricity grids are being under pressure and require support from naturally abundant and inexpensive alternative energy sources such as wind and solar. This is why the world has recently witnessed the emergence of renewable energy-based charging stations that have received great acclaim. In this paper, we review studies related to this type of alternative energy charging infrastructure. We provide comprehensive research covering essential aspects in this field, including resources, potentiality, planning, control, and pricing. The study also includes studying and clarifying challenges facing this type of electric charging station and proposing suitable solutions for those challenges. The paper aims to provide the reader with an overview of charging electric vehicles through renewable energy and establishing the ground for further research in this vital field.

Highlights

  • The analysis indicated that the use of direct wind to electric vehicles (EVs) provides enough constant power for large-scale charging stations

  • Lacks the electrical behavior information of the network while charging, so these models have their importance if connected to an electrical network

  • The EVs can determine the siting of charging stations by providing waiting spots; in addition to charging spots, the utilization of chargers increases, and the number of required chargers at each site decreases

Read more

Summary

Introduction

The remarkable increase in the use of electric vehicles (EVs) has resulted in a massive rise in demand for electric energy across the globe. The global electric vehicle market has grown significantly. The number of EVs on the road in 2010 was a few hundred; this number rose to approximately three million in 2017 and approximately six million in early. Electric vehicles are exciting alternatives to conventional vehicles (CVs). With zero carbon emissions during operation, the EV has the ability to reduce total climate effect and pollutant emissions significantly. As fossil fuels are phased out to a greater degree, the need for biofuels would be reduced. Electric motors have an efficiency of 80–95% [2], making them a more appealing choice than CVs, which have an efficiency of less than

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.