Abstract

Preliminary design concepts for the proposed Subsurface Repository at Yucca Mountain indicate extensive reliance on modern, computer-based, digital control technologies. The purpose of this analysis is to investigate the degree to which the U. S. Nuclear Regulatory Commission (NRC) has accepted and approved the use of digital control technology for safety-related applications within the nuclear power industry. This analysis reviews cases of existing digitally-based control systems that have been approved by the NRC. These cases can serve as precedence for using similar types of digitally-based control technologies within the Subsurface Repository. While it is anticipated that the Yucca Mountain Project (YMP) will not contain control systems as complex as those required for a nuclear power plant, the review of these existing NRC approved applications will provide the YMP with valuable insight into the NRCs review process and design expectations for safety-related digital control systems. According to the YMP Compliance Program Guidance, portions of various NUREGS, Regulatory Guidelines, and nuclear IEEE standards the nuclear power plant safety related concept would be applied to some of the designs on a case-by-case basis. This analysis will consider key design methods, capabilities, successes, and important limitations or problems of selected control systems that have been approved for use in the Nuclear Power industry. An additional purpose of this analysis is to provide background information in support of further development of design criteria for the YMP. The scope and primary objectives of this analysis are to: (1) Identify and research the extent and precedence of digital control and remotely operated systems approved by the NRC for the nuclear power industry. Help provide a basis for using and relying on digital technologies for nuclear related safety critical applications. (2) Identify the basic control architecture and methods of key digital control systems approved for use in the nuclear power industry by the NRC. (3) Identify and discuss key design issues, features, benefits, and limitations of these NRC approved digital control systems that can be applied as design guidance and correlated to the Monitored Geologic Repository (MGR) design requirements. (4) Identify codes and standards used in the design of these NRC approved digital control systems and discuss their possible applicability to the design of a subsurface nuclear waste repository. (5) Evaluate the NRC approved digital control system's safety, reliability and maintainability features and issues. Apply these to MGR design methodologies and requirements. (6) Provide recommendations for use in developing design criteria in the System Description Documents for the digital control systems of the subsurface nuclear waste repository at Yucca Mountain. (7) Develop recommendations for applying NRC approval methods for digital control systems for the subsurface nuclear waste repository at Yucca Mountain. This analysis will focus on the development of the issues, criteria and methods used and required for identifying the appropriate requirements for digital based control systems. Attention will be placed on development of recommended design criteria for digital controls including interpretation of codes, standards and regulations. Attention will also focus on the use of digital controls and COTS (Commercial Off-the-shelf) technology and equipment in selected NRC approved digital control systems, and as referenced in applicable codes, standards and regulations. The analysis will address design issues related to COTS technology and how they were dealt with in previous NRC approved digital control systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call