Abstract

Textured surfaces with sophisticated micro/nano structures can provide interesting and advanced functions. In order to promote those unique functions into the practical use, high performance manufacturing technologies are required. Nowadays, elliptical vibration cutting (EVC) is attracting more and more attentions due to its excellent machining performances, especially the advantageous in the precision machining of difficult-to-cut materials. The emphasis on this literature review is the micro/nano machining technology by applying EVC. The development of the EVC technology is simply introduced, and then the advantageousness of EVC in the machining process is explored in detail. As following, the development of different EVC devices are introduced, and the applications of the micro/nano structure fabrication is detailedly expatiated by applying the different types of elliptical vibrators. By controlling the motion of the ultra-precision machine tool itself, the micro/nano structure can be accurately fabricated on various workpiece materials with the reduction of cutting forces, burr generation, tool wear, et al. in EVC process. Moreover, a unique amplitude control sculpturing method, where the depth of cut is arbitrary changed by controlling the vibration amplitude in the machining process, is introduced. By applying the amplitude control sculpturing method, ultra-precision micro/nano structures can be efficiently sculptured especially on the difficult-to-cut materials. Finally, the elliptical vibration texturing process is also explored in the fast micro/nano machining of the simple and regular structures. The EVC technology is expected to promote the development of micro/nano machining process in the actual industrial applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.