Abstract

Textured surfaces with sophisticated micro/nanostructures can provide advanced and useful functions. To promote widespread use of these textured surfaces with mass production, manufacturing technology of structured surfaces for ultra-precision dies and molds made of hardened steel and tungsten carbide becomes essential. Nowadays, elliptical vibration cutting (EVC) is attracting more and more attention due to its excellent machining performances in precision machining of difficult-to-cut materials. The emphasis on this chapter is the practical applications of EVC in micro/nanomanufacture process. The development of the EVC technology is introduced firstly, and then, the advantageousness of EVC in the micro/nanomachining process is explored in detail. Moreover, a unique amplitude control sculpturing method, where the depth of cut is arbitrary changed by controlling the vibration amplitude, is introduced. As following, a criterion to indicate how to obtain ductile machining of tungsten carbide is clarified by applying EVC. The feasibility of highly accurate micro/nanomachining of tungsten carbide and hardened steel is experimentally verified with a machining accuracy of about ±1 nm in the depth-of-cut direction. A series of functional surfaces with textured grooves, dimple patterns, and sinusoidal grids were successfully fabricated on tungsten carbide, hardened steel, and single-crystal silicon, which could be applied to the molding, encoder, optoelectronics, and semiconductor industries. The EVC technology is expected to promote the development of micro/nanomachining process in the actual industrial applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call