Abstract
PurposeHigh-strength martensitic steels having strong hydrogen embrittlement (HE) susceptibility and the metal carbide (MC) nanoprecipitates of microalloying elements such as Nb, V, Ti and Mo in the steel matrix can effectively improve the HE resistance of steels. This paper aims to review the effect of MC nanoprecipitates on the HE resistance of high-strength martensitic steels.Design/methodology/approachIn this paper, the effects of MC nanoprecipitates on the HE resistance of high-strength martensitic steels are systematically described in terms of the types of MC nanoprecipitates, the influencing factors, along with numerical simulations.FindingsThe MC nanoprecipitates, which are fine and semicoherent with the matrix, effectively improve the HE resistance of steel through the hydrogen trapping effects and microstructure optimization, but its effect on the HE resistance of steel is controlled by its size, number and distribution state.Originality/valueThis paper summarizes the effects and mechanisms of MC nanoprecipitates on HE performance of high-strength martensitic steel and provides the theoretical basis for corrosion engineers to design high-strength martensitic steels with excellent HE resistance and improve production processes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.