Abstract
Laser-based additive manufacturing (AM) of metals using powder feedstock can be accomplished via two broadly defined technologies: directed energy deposition (DED) and powder bed fusion (PBF). In these processes, metallic powder is delivered to a location and locally melted with a laser heat source. Upon deposition, the material undergoes a rapid cooling and solidification, and as subsequent layers are added to the component, the material within the component is subjected to rapid thermal cycles. In order to adopt AM for the building of structural components, a thorough understanding of the relationships among the complex thermal cycles seen in AM, the unique heterogeneous and anisotropic microstructure, and the mechanical properties must be developed. Researchers have fabricated components by both DED and PBF from the widely used titanium alloy Ti-6Al-4V and studied the resultant microstructure and mechanical properties. This review article discusses the progress to date on investigating the as-deposited and heat-treated microstructures and mechanical properties of Ti-6Al-4V structures made by powder-based laser AM using DED and PBF.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.