Abstract

Several inertial confinement fusion (ICF) capsule designs have been proposed as possible candidates for achieving ignition by indirect drive on the National Ignition Facility (NIF) laser [Paisner et al., Laser Focus World 30, 75 (1994)]. This article reviews these designs, their predicted performance using one-, two-, and three-dimensional numerical simulations, and their fabricability. Recent design work at a peak x-ray drive temperature of 250 eV with either 900 or 1300 kJ total laser energy confirms earlier capsule performance estimates [Lindl, Phys. Plasmas 2, 3933 (1995)] that were based on hydrodynamic stability arguments. These simulations at 250 eV and others at the nominal 300 eV drive show that capsules having either copper doped beryllium (Be+Cu) or polyimide (C22H10N2O4) ablators have favorable implosion stability and material fabrication properties. Prototypes of capsules using these ablator materials are being constructed using several techniques: brazing together machined hemishells (Be+Cu), sputter deposition (Be+Cu), and monomer deposition followed by thermal processing (polyimide).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.