Abstract

We suggest that a potentially dominant but previously neglected source of pusher-fuel and hot-spot “mix” may have been the main degradation mechanism for fusion energy yields of modern inertial confinement fusion (ICF) capsules designed and fielded to achieve high yields—not hydrodynamic instabilities. This potentially dominant mix source is the spallation of small chunks or “grains” of pusher material into the fuel regions whenever (1) the solid material adjacent to the fuel changes its phase by nucleation and (2) this solid material spalls under shock loading and sudden decompression. We describe this mix mechanism, support it with simulations and experimental evidence, and explain how to eliminate it and thereby allow higher yields for ICF capsules and possibly ignition at the National Ignition Facility.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.