Abstract

The Hematoxylin and Eosin stain is a cornerstone in histopathology that facilitates the microscopic examination of tissue samples for identifying infections and tumors. However, challenges arise from the similar appearances of diseases and cells, prompting the emergence of Immunohistochemistry (IHC) as an important technique. This review summarizes the principles, procedures, and applications and future perspectives of IHC, a prevalent immunostaining method allowing the detection of specific proteins in tissue sections. The multistep IHC process involves fixation, embedding, sectioning, antigen retrieval, blocking, detection, counterstaining, mounting, and visualization, with interpretation relying on factors such as microanatomic distribution and staining intensity. Common errors in IHC such as non-specific staining, tissue artifacts, inadequately inactivation of endogenous peroxidase activity and cross-reactivity, can substantially affect the accuracy and reliability of results, thereby impacting the interpretation of biological findings. Serving diagnostic, prognostic, predictive, and therapeutic roles in various conditions, including tumors, infectious diseases, neurodegenerative disorders, and muscle diseases, IHC remains pivotal despite its intricate nature. The adoption of digital pathology emerges as a progressive enhancement, addressing limitations and ensuring more accurate analyses in histopathology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call