Abstract
Association rule defines the relationship among the items and discovers the frequent items using a support-confidence framework. This framework establishes user-interested or strong association rules with two thresholds (i.e., minimum support and minimum confidence). Traditional association rule mining methods (i.e., apriori and frequent pattern growth [FP-growth]) are widely used for discovering of frequent itemsets, and limitation of these methods is that they are not considering the key factors of the items such as profit, quantity, or cost of items during the mining process. Applications like e-commerce, marketing, healthcare, and web recommendations, etc. consist of items with their utility or profit. Such cases, utility-based itemsets mining methods, are playing a vital role in the generation of effective association rules and are also useful in the mining of high utility itemsets. This paper presents the survey on high-utility itemsets mining methods and discusses the observation study of existing methods with their experimental study using benchmarked datasets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Information Technology Project Management
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.