Abstract

High Utility Itemset mining is considered one of the critical and challenging problems in data mining. The existing mining framework is limited to analyzing occurrence counts of items in the Database. However, this framework applies a single minimum utility threshold value that fails to consider different item characteristics. Recent methods of association mining focused on finding the high utility itemsets instead of frequent itemsets generations. Some utility-based mining methods that is Faster High Utility Itemset Mining (FHM), High Utility Itemset Miner (HUI-Miner), Direct Discovery of High Utility Patterns (D2HUP), Utility Pattern Growth (UP Growth & UP Growth+) are studied for the generation of high utility itemsets generations. Existing HUI mining methods are effectively generating HUIs. However, developing a faster and memory-efficient HUI mining method is required. For this purpose, this work develops an Enhanced Fast - High Utility Itemset Mining (EF-HUIM) method for the faster generation of high utility itemsets and respective association rules.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.