Abstract
To process data operations more efficiently in deep neural networks (DNNs), studies on spiking neural networks (SNNs) have been conducted. In the reported literature, CMOS neuron circuits that mimic the biological behavior of an integrate-and-fire function of neurons have been mainly studied. Because conventional neuronal circuits need to be improved in terms of area and energy consumption, neuron devices with memory functions such as resistive random access memory (RRAM), phase-change random access memory (PCRAM), magnetic random access memory (MRAM), floating body FETs, and ferroelectric FETs have been emerged to replace a membrane capacitor and trigger device in the conventional neuron circuits. In this review article, neuron devices that can increase the integration density of conventional neuronal circuits and reduce power consumption are reviewed. These devices are expected to play an important role in future neuromorphic systems.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.