Abstract

Electrochemical probes and sensors have been developed to detect and monitor atmospheric corrosion of metallic materials in the past 40 decades. Depending on the measurement methods, the electrodes and structures of probes and sensors can be different. Various mathematical methods and models have been developed to determine the time-dependent corrosion rate of metal under thin electrolyte film. Polarization techniques such as electrochemical impedance spectroscopy (EIS) and linear polarization resistance (LRP) have the advantage of easy data interpretation but have a tendency to interfere with the corrosion system under investigation. Nonpolarized techniques such as electrochemical noise (EN) do not disturb the corrosion system but data interpretation can be problematic. To achieve long term and reliable corrosion monitoring, optimized electrode design and a multichannel electrochemical instrument are required. New corrosion models and novel data interpretation methods are needed in future work.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.