Abstract

Gaseous hydrogen for fuel cell electric vehicles must meet quality standards such as ISO 14687:2019 which contains maximal control thresholds for several impurities which could damage the fuel cells or the infrastructure. A review of analytical techniques for impurities analysis has already been carried out by Murugan et al. in 2014. Similarly, this document intends to review the sampling of hydrogen and the available analytical methods, together with a survey of laboratories performing the analysis of hydrogen about the techniques being used. Most impurities are addressed, however some of them are challenging, especially the halogenated compounds since only some halogenated compounds are covered, not all of them. The analysis of impurities following ISO 14687:2019 remains expensive and complex, enhancing the need for further research in this area. Novel and promising analyzers have been developed which need to be validated according to ISO 21087:2019 requirements.

Highlights

  • Fuel cell electric vehicles (FCEV) together with electric vehicles are a more eco friendly alternative to the current vehicles with combustion engines

  • This document intends to review the sampling of hydrogen and the available analytical methods, together with a survey of laboratories performing the analysis of hydrogen about the techniques being used

  • Alumina Al2O3 sensors which are dedicated to humidity measurements

Read more

Summary

Introduction

Fuel cell electric vehicles (FCEV) together with electric vehicles are a more eco friendly alternative to the current vehicles with combustion engines. The momentum of FCEV is rising, with a development of more than 350 hydrogen refueling stations (HRS) worldwide. Automotive manufacturers (i.e. Toyota, Hyundai et al.) increase the number of FCEVs manufactured each year (Toyota increases from 3,000 in 2017 to 30,000 FCEVs equivalent by 2020s (Toyota Europe, 2018) or Hyundai increases to 500,000 by 2030 (Hyundai 2018)). New applications arise in heavy duty FCEV with Hyundai offering FCEV trucks to European, USA and Asian markets (i.e. 1,600 Hyundai FCEVs in Switzerland by 2025 (Hyundai 2019)). The development of heavy-duty applications, extension of passenger car FCEVs will require the HRS infrastructure to provide hydrogen fuel quality compliant with the end user expectations and the automotive manufacturers requirements. The quality of hydrogen delivered by an HRS is crucial

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.