Abstract

Ex situ household rainwater harvesting (RWH) systems have been introduced at a large scale in Ethiopia to increase the water availability for smallholders through supplementary irrigation. The first objective of this paper is to review the performance of these systems in Ethiopia based on various assessment studies. The second objective is to provide quantitative biophysical and socio-economic analyses of ex situ household RWH systems contributing to the better understanding of their performance and the identification of options to improve their performance. Uptake of RWH systems by smallholders in Ethiopia is limited and the available information suggests that this is associated among others with poor planning and implementation, poorly functioning input and output markets and the lack of farmers’ skills to use these systems effectively. Our quantitative meta-analyses illustrate that water availability of three studied RWH systems is low in relation to crop water needs, particularly for maize. The variation in area that can be irrigated across years exposes users of RWH systems to considerable risks as the availability of irrigation water depends on prevailing rainfall conditions. The area that can be irrigated varies greatly depending on amount and distribution of rainfall, type of RWH system and crop type. The economics of onion (cash crop) are promising only for plastic lined RWH systems, but those for maize are unfavourable independent of the studied RWH systems. Associated labour requirements especially for water lifting and application are high and possibly constraining the sustainable use of RWH systems. The potential of ex situ household RWH systems to increase agricultural production and income is site-specific depending on biophysical, institutional and socio-economic conditions, and depends on household-specific conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call