Abstract
The human immunodeficiency virus type 1 (HIV-1) integrase (IN) is essential for integration of viral DNA into host cell chromatin. We have reported previously (Priet, S., Navarro, J. M., Gros, N., Querat, G., and Sire, J. (2003) J. Biol. Chem. 278, 4566-4571) that IN also plays a role in the packaging of the host uracil DNA glycosylase UNG2 into viral particles and that the region of IN encompassing residues 170-180 was responsible for the interaction with UNG2 and for its packaging into virions. In this work, we aimed to investigate the replication of HIV-1 viruses rendered deficient in virion-associated UNG2 by single or double point mutations in the region 170-180 of IN. We show that the L172A/K173A IN mutant virus was deficient for UNG2 packaging and was defective for replication because of a blockage at the stage of proviral DNA integration in host cell DNA. In vitro assays using long term repeat mimics, however, demonstrate that the L172A/K173A IN mutant was catalytically active. Moreover, trans-complementation experiments show that the viral propagation of L172A/K173A viruses could be rescued by the overexpression of Vpr.L172A/K173A IN fusion protein in a dose-dependent manner and that this rescue is independent of UNG2 packaging. Altogether, our data indicate that L172A/K173A mutations of IN induce a subtle defect in the function of IN, which nevertheless dramatically impairs viral replication. Unexpectedly, this blockage of replication could be overcome by forcing the packaging of higher amounts of this same mutated integrase. This is the first study reporting that blockage of the integration process of HIV-1 provirus carrying a mutation of IN could be alleviated by increasing amounts of IN even carrying the same mutations.
Highlights
HIV-11 integrase (IN) is an essential component required for the persistence of infection in vivo
We show that the L172A/K173A IN mutant virus was deficient for UNG2 packaging and was defective for replication because of a blockage at the stage of proviral DNA integration in host cell DNA
Real-time PCR was performed with an ABI PRISM 7000 apparatus (Applied Biosystems) using PCR primers and Propagation of IN Mutant Viruses in Infected Cell Culture—In a previous report [23] we showed that residues encompassing the region 170 –181 of IN were critical for host UNG2 packaging
Summary
HIV-11 integrase (IN) is an essential component required for the persistence of infection in vivo. IN is incorporated into viral particles as a part of the Gag-Pol precursor polyprotein that contains Gag (matrix, capsid (CA), nucleocapsid NCp7, and p6) and Pol (protease, reverse transcriptase, and IN) domains. Each of these domains is expressed individually upon proteo-. In some cases host proteins, such as the integrase inhibitor 1 (Ini1) factor or the uracil DNA glycosylase (UNG2) enzyme, interact with IN and are incorporated into viral particles [21, 22].
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have