Abstract
Individual and combined polyalkylcyanoacrylate nanoparticle formulation of cyclosporin A and doxorubicin were prepared and evaluated in an attempt to show improved growth inhibition efficacy in a resistant cell culture line. The drug loaded nanoparticles were prepared using the well established emulsion polymerization process without using any modification for the hydrophilic doxorubicin drug whereas the incorporation of cyclosporin A needed to wait a moment after the polymerization reaction started. This was necessary to avoid cyclosporin A precipitation and polymer aggregation. Cyclosporin A release from the nanoparticles was rapid probably because the drug was adsorbed onto the nanoparticles surface rather than embedded into the polymeric core. Doxorubicin displayed also a burst effect but with a slower second phase probably related with the nanoparticles bioerosion rate owing to its entrapment in the polymeric network. Finally, it was shown in resistant cell culture experiments that the association of both cyclosporin A and doxorubicin within a single nanoparticle formulation elicited the most effective growth rate inhibition as compared to other combinations of both drugs while using a lower amount of polymer compared to separated nanoparticle formulations. This result was probably due to the synergistic effect achieved by combining the chemo-sensitizing compound cyclosporin A, with an effective cytotoxic drug like doxorubicin.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have