Abstract

Structural control of lipid membranes is important for mechanisms underlying biological functions and for creating high-functionality soft materials. We demonstrate the reversible control of vesicle structures (liposomes) using supramolecular assemblies. Specifically, water-soluble anionic porphyrin molecules interact with positively charged lipid membrane surfaces to form one-dimensional self-assembled structures (J-aggregates) under acidic conditions. Cryogenic transmission electron microscopy revealed that porphyrin J-aggregates on the membrane surface induced an extensive structural change from vesicles to layered disks. Neutralization of the solution deformed the porphyrin J-aggregates, thereby reforming nanosized liposomes from the layered disks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.