Abstract

Birnessite-related manganese dioxides (MnO2) have recently been studied owing to their diverse low-dimensional layered structures and potential applications in energy devices. The birnessite MnO2 possesses a layered structure with edge-shared MnO6 octahedra layer stacked with interlayer of cations. The unique layered structure may provide some distinct electrical properties for the 2D layered nanosheets. In this work, layered K-birnessite MnO2 samples are synthesized by a hydrothermal method. The resistive switching (RS) devices based on single K-birnessite MnO2 nanosheets are fabricated by transferring the nanosheets onto SiO2/Si substrates through a facile and feasible method of mechanical exfoliation. The device exhibits nonvolatile memory switching (MS) behaviors with high current ON/OFF ratio of ∼2 × 105. And more importantly, reversible transformation between the nonvolatile MS and volatile threshold switching (TS) can be achieved in the single layered nanosheet through tuning the magnitude of compliance current (Icc). To be more specific, a relatively high Icc (1 mA) can trigger the nonvolatile MS behaviors, while a relatively low Icc (≤100 μA) can generate volatile TS characteristics. This work not only demonstrates the memristor based on single birnessite-related MnO2 nanosheet, but also offers an insight into understanding the complex resistive switching types and relevant physical mechanisms of the 2D layered oxide nanosheets.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call