Abstract

Individual tin phthalocyanine (SnPc) molecules adsorbed on the InAs(111)A surface were studied by low-temperature scanning tunnelling microscopy (STM) at 5 K. Consistently with the nonplanar molecular structure, SnPc adopts two in-plane adsorption geometries with the centre Sn atom either above (SnPcup) or below (SnPcdown) the molecular plane. Depending on the current and bias applied to the tunnel junction, the molecule can be reversibly switched between the two conformations, implying a controlled transfer of the Sn atom through the molecular plane. The SnPcdown conformer is characterized by an enhanced surface bonding as compared to the SnPcup conformer. SnPcup molecules can be repositioned by the STM tip by means of lateral manipulation, whereas this is not feasible for SnPcdown molecules. The reversible switching process thus enables one to either laterally move the molecule or anchor it to the semiconductor surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.