Abstract

Liquid crystal micro-particles are functional materials possessing optical and dielectric anisotropies originating from the arrangement of rod-like molecules within the particles. Although they can be switched by an electric field, particles dispersed in isotropic hosts usually cannot return to their original state, because there is no restoration force acting on the particles. Here, we describe reversible switching of liquid crystal micro-particles by dispersing them in a nematic liquid crystal host. We fabricate square micro-particles with unidirectional molecular alignment and investigate their static and dynamic electro-optic properties by applying an in-plane electric field. The behavior of the micro-particles is well-described by the theoretical model we construct, making this study potentially useful for the development of liquid crystal-liquid crystal particle composites with engineered properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.