Abstract

Abstract Microtubule particles and metal-coated microtubules were dispersed in various host liquid crystal mixtures. Dispersion effects were evaluated as a function of liquid crystal type, viscosity, dielectric anisotropy and surface interaction. Experimental results indicated that all the types of liquid crystals studied were aligned perpendicular to the microtubule surfaces, regardless of liquid crystal composition or various surface coatings used on the metal-coated microtubules. Low concentrations of the metal-coated microtubules in nematic liquid crystal hosts were aligned by flow or cell surface alignment conditions, and could be modulated by electric or magnetic fields. We observed better microtubules dispersion uniformity in high viscosity liquid crystal host mixtures and in liquid crystal-monomers than in isotropic fluids. Microtubules particles dispersed in ROTN-404 liquid crystal mixture had a much higher birefringence in the microwave region than dispersion in a paraffin oil.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.