Abstract

Composite colloidal nanoparticles were prepared by a carbonate controlled-addition method in the presence of phytic acid, in which an aqueous ammonium carbonate solution was added into an aqueous solution of phytic acid and CaCl2. The number-average particle size of the colloidal particles was 76 ± 18 nm formed by using the molar ratio [phytic acid]/[Ca2+] = 0.5 from the complexation time of 1 h. The composite nanoparticles were stable for more than 5 days in the suspension under the quiescent condition. After isolation of the nanoparticles by ultrafiltration, the dried samples could be redispersed in water. Effects of the complexation times of the aqueous solution of phytic acid and CaCl2 and the molar ratio ([phytic acid]/[Ca2+]) were studied. Increasing the concentration of the calcium reagents as well as increasing the complexation times increased the particle sizes. The minimum and maximum average particle sizes of 29 and 142 nm were obtained. The plot of the transmittance at 350 nm of the aqueous solution of the dispersion against pH values after addition of 0.05 M HCl for 6 h showed that, by gradually increasing turbidity with decreasing pH from 9.6 to 7.3, precipitates were recognized at below pH 7.5, and turbidity decreased with further decreasing pH beyond 7.2. Dynamic light scattering analysis showed that the particle diameters increased from 90 to 200 nm with decreasing pH from 9.6 to 7.2. When increasing the pH from 6.2, the precipitate was redispersed and the turbidity increased to a pH of 7.4. No precipitates were observed above a pH of 7.4. These results suggest that the present phytic acid stabilized nanoparticles exhibit pH-dependent reversible precipitation and redispersion without degradation under slightly acidic conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call