Abstract

The pre-H2O treatment and Al2O3 film growth under a two-temperature-regime mode in an oxygen-deficient atomic layer deposition (ALD) chamber can induce n-type doping of graphene, with the enhancement of electron mobility and no defect introduction to graphene. The main mechanism of n-type doping is surface charge transfer at graphene/redox interfaces during the ALD procedure. More interestingly, this n-type doping of graphene is reversible and can be recovered by thermal annealing, similar to hydrogenated graphene (graphane). This technique utilizing pre-H2O treatment and an encapsulated layer of Al2O3 achieved in an oxygen-deficient ALD chamber provides a simple and novel route to fabricate n-type doping of graphene.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.