Abstract

We demonstrate reversible movement of 1/2[11[over ]0](110) dislocation loops generated from nanodisturbances in a beta-titanium alloy. High resolution transmission electron microscope observations during an in situ tensile test found three reversible deformation mechanisms, nanodisturbances, dislocation loops and martensitic transformation, that are triggered in turn with increasing applied stress. All three mechanisms contribute to the nonlinear elasticity of the alloy. The experiments also revealed the evolution of the dislocation loops to disclination dipoles that cause severe local lattice rotations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.