Abstract
A new interpretation of Runge-Kutta methods for differential algebraic equations (DAEs) of index 2 is presented, where a step of the method is described in terms of a smooth map (smooth also with respect to the stepsize). This leads to a better understanding of the convergence behavior of Runge-Kutta methods that are not stiffly accurate. In particular, our new framework allows for the unified study of two order-improving techniques for symmetric Runge-Kutta methods (namely post-projection and symmetric projection) specially suited for solving reversible index-2 DAEs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.