Abstract

Motivated by Pryce’s structural analysis method for differential algebraic equations (DAEs), we show the complexity of the fixed-point iteration algorithm (FPIA) and propose a fixed-point iteration method with parameters. It leads to a block fixed-point iteration method (BFPIM) which can be applied to immediately calculate the crucial canonical offsets for large-scale (coupled) DAE systems with block-triangular structure, and its complexity analysis is also given in this paper. Moreover, preliminary numerical experiments show that the time complexity of BFPIM can be reduced by at least O(l) compared to the FPIA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call