Abstract

Rhodium gem-dicarbonyl complexes, Rh(CO)2, bonded within the pore structure of zeolite HY and formed by the reaction of Rh(CO)2(acac) (acac = acetylacetonato) with OH groups on the zeolite surface were converted in >95% yield to Rh4(CO)12 by reaction with CO + water at 308 K, and the process was reversed by treatment of the supported clusters in helium at 353 K. The chemistry of these reactions was characterized by IR and X-ray absorption spectra recorded during the changes and by density functional theory. The cluster formation is driven by the water gas shift half-reaction, leading to generation of CO2 and zeolite surface protons, and the reverse reaction proceeds via the half-reaction that completes the cycle of the water gas shift reaction. Thus, the overall process is cyclic–catalytic. The yield in the synthesis of Rh4(CO)12 is the highest reported, and the high selectivity is facilitated by the confining environment for the clusters in the zeolite supercages and the low density of OH groups on the z...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.