Abstract

Programmable optoelectronic devices call for the reversible control of the photocarrier recombination process by in-gap states in oxide semiconductors. However, previous approaches to produce oxygen vacancies as a source of in-gap states in oxide semiconductors have hampered the reversible formation of oxygen vacancies and their related phenomena. Here, a new strategy to manipulate the 2D photoconductivity from perovskite stannates is demonstrated by exploiting spatiallyselective photochemical reaction under ultraviolet illumination at room temperature. Remarkably, the ideal trap-free photocurrent of air-illuminated BaSnO3 (≈200pA) is reversibly switched into three orders of magnitude higher photocurrent of vacuum-illuminated BaSnO3 (≈335nA) with persistent photoconductivity depending on ambient oxygen pressure under illumination. Multiple characterizations elucidate that ultraviolet illumination of BaSnO3 under low oxygen pressure induces surface oxygen vacancies as a result of surface photolysis combined with the low oxygen-diffusion coefficient of BaSnO3 ; the concentrated oxygen vacancies are likely to induce a two-step transition of photocurrent response by changing the characteristics of in-gap states from the shallow level to the deep level. These results suggest a novel strategy that uses light-matter interaction in a reversible and spatiallyconfined way to manipulate functionalities related to surface defect states, for the emerging applications using newly discovered oxide semiconductors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.