Abstract

Inspired by the regulation of cellular activities found in the ion channel proteins, here we developed membrane-embedded synthetic chiral receptors 1 and 2 with different terminal structures, where receptor 1 has hydrophobic triisopropylsilyl (TIPS) groups and receptor 2 has hydrophilic hydroxy groups. The receptors have ligand-binding units that interact with cationic amphiphiles such as 2-phenethylamine (PA). Conductance study revealed that the receptors hardly show ion transportation at the ligand-free state. After ligand binding involving a conformational change, receptor 1 bearing TIPS termini displays a significant current enhancement due to ion transportation. The current substantially diminishes upon addition of β-cyclodextrin (βCD) that scavenges the ligand from the receptor. Importantly, the receptor again turns into the conductive state by the second addition of PA, and the activation/deactivation of the ion transportation can be repeated. In contrast, receptor 2 bearing the hydroxy terminal groups hardly exhibits ion transportation, suggesting the importance of terminal TIPS groups of 1 that likely anchor the receptor in the membrane.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.