Abstract

By using a tracer method, we demonstrate that short-term in vitro exposure of intact rat reticulocytes to ethanol elicits a biphasic response of cell-bound Mg 2+-dependent phosphatidate phosphohydrolase (PAP). An initial concentration-dependent (200–750 mM) activity decrease is rapidly (< 10 min) followed by reversal of the inhibition in the presence of ethanol, suggesting the development of a cell resistance to the inhibitory agent. Addition to the cell suspension of propranolol (100 μM), a known PAP inhibitor, does elicit PAP inhibition but unlike ethanol, inhibition is not followed by a return with time to control value. Ethanol-induced inhibition of cell-bound PAP was also demonstrated in cell-free extracts, where the Mg 2+-dependent activity was decreased both in the particulate and soluble fractions. In the intact cells, the transient PAP inhibition occurs in concomitance with an overall increase in total glycerolipid biosynthesis, which is constant over 60-min incubation. We suggest that the biphasic mode of response to ethanol of Mg 2+-dependent PAP activity may play a role in the mechanism of membrane adaptation to ethanol, and thereby to the pathogenesis of alcoholism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.