Abstract

We have synthesized and characterized a phosphoramidite derivative of 2′-deoxy-6-selenoinosine (d6SeI) and incorporated this modification into an oligonucleotide by solid-phase synthesis. During cleavage from the solid-support and deprotection, spontaneous dimerization of this oligonucleotide occurs via formation of a diselenide cross-link between the modified nucleobases. This cross-link can be readily reduced to restore the single-stranded oligonucleotide. UV thermal denaturation and circular dichroism spectroscopy of duplexes with d6SeI paired against all four native nucleobases revealed minor differences in stability and structure relative to 2′-deoxyinosine. This selenium containing nucleobase modification may be useful for applications in DNA nanomaterials and X-ray crystallography.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.