Abstract

Abstract Various statistics of temperature profiles are examined in an attempt to distinguish irreversible structures due to mixing from reversible distortions induced by internal wave straining. Even if all the low gradient regions were the result of mixing events, an analysis of the profiles shows that such events are rare and most often incomplete. An upper bound on the mixing effectiveness is obtained; it increases as the vertical scale decreases. Taking next the opposite view that internal wave straining is the sole process, an analytic model is developed to calculate the probability density function of temperature gradients. The model considers the straining by a weakly nonlinear Gaussian internal wave field of a linear temperature profile. The nonlinearity of the field is essential to account for the skewness of the probability distributions. Comparisons with data are quite satisfactory at scales larger than ∼2 m, less so at smaller scales. We conclude that nonlinear effects are important; at scale...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.