Abstract

An improved reversed-phase high-performance liquid chromatography (HPLC) procedure with ultraviolet detection is described for the simultaneous determination of S-adenosyl- l-methionine (SAM) and S-adenosyl- l-homocysteine (SAH) in mouse tissue. The method provides rapid resolution of both compounds in a 25-μl perchloric acid extract of the tissue. The limits of detection in 25-μl injection volumes were 22 and 20 pmol for SAM and SAH, respectively. The limits of quantitation in 25-μl injection volumes were 55 and 50 pmol for SAM and SAH, respectively, with recovery consistently >98%. The assay was validated over linear ranges of 55–11 000 pmol for SAM and 50–10 000 pmol for SAH. The intra-day precision and accuracy were ≤6.4% relative standard deviation (RSD) and 99.9–100.0% for SAH and ≤6.7% RSD and 100.0–100.1% for SAM. The inter-day precision and accuracy were ≤5.9% RSD and 99.9–100.6% for SAH and ≤7.0% RSD and 99.5–100.1% for SAM. Compared to earlier procedures, the HPLC method demonstrated significantly better separation, detection limit and linear range for SAM and SAH determination. The assay demonstrated applicability to monitoring in mice the time-course of the effect of methionine on SAM and SAH levels in the liver. Administering methionine to mice increased by 10-fold the liver concentration of SAM and SAH within 2 h, which then rapidly decreased to the control levels by 8 h. This indicated that methionine was promptly converted to SAM and then rapidly catabolized into SAH. Thus, the metabolism of methionine to SAM should be considered in the supplementation of methionine to maintain SAM levels in the body.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.