Abstract

An electrochemical surface treatment has been developed that decreases the reverse-bias leakage current in Schottky diodes fabricated on GaN grown by molecular-beam epitaxy (MBE). This treatment suppresses current flow through localized leakage paths present in MBE-grown GaN, while leaving other diode characteristics, such as the Schottky barrier height, largely unaffected. A reduction in leakage current of three orders of magnitude was observed for Schottky diodes fabricated on the modified surface compared to diodes fabricated on the unmodified surface for reverse-bias voltages as large as −20 V. In addition to suppressing reverse-bias leakage, the surface treatment was found to improve substantially the ideality factor of the modified surface diodes compared to that of unmodified surface diodes, suggesting that such a surface modification process could be useful for a variety of GaN-based electronic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.