Abstract
Unsupported Fe-oxide nanoparticles were used as catalysts for reverse water gas shift (RWGS) reaction at 600°C, which showed a high catalytic activity and stability. Using transmission electron microscopy, nanoparticles of Fe-oxide was found to be resistant toward agglomeration during the RWGS reaction. X-ray photoelectron spectroscopy and X-ray diffraction studies revealed that C and O formed by the reaction between Fe-oxide surface and reagent and product (CO and CO2) of the RWGS reaction diffused into the bulk of Fe-oxide nanocatalysts. As a consequence, structure of catalytically active surface, consisting of metallic Fe, was maintained during the RWGS reaction, resulting in a long-term stability of catalytic activity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.