Abstract

In this work, we propose a methodology to solve a nonlinear mathematical model for the optimal design of reverse osmosis (RO) networks, which ameliorates the shortcomings of the computational performance and sometimes convergence failures of commercial software to solve the rigorous mixed integer nonlinear programming (MINLP) models. Our strategy consists of the use of a genetic algorithm to obtain initial values for a full nonlinear MINLP model. In addition, because the genetic algorithm based on the rigorous model equations is insurmountably slow, we use metamodels to reduce the mathematical complexity and considerably speed up the run. We explore the effects of the feed flow, seawater concentration, number of reverse osmosis stages, and the maximum number of membrane modules in each pressure vessel on the total annualized cost of the plant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.