Abstract

This study was designed to gain additional insight into the mechanism of the slow force response (SFR) to stretch of cardiac muscle. SFR and changes in intracellular Na(+) concentration ([Na(+)](i)) were assessed in cat papillary muscles stretched from 92% to approximately 98% of L(max). The SFR was 120+/-0.6% (n=5) of the rapid initial phase and coincided with an increase in [Na(+)](i). The SFR was markedly depressed by Na(+)-H(+) exchanger inhibition, AT(1) receptor blockade, nonselective endothelin-receptor blockade and selective ET(A)-receptor blockade, extracellular Na(+) removal, and inhibition of the reverse mode of the Na(+)-Ca(2+) exchange by KB-R7943. KB-R7943 prevented the SFR but not the increase in [Na(+)](i). Inhibition of endothelin-converting enzyme activity by phosphoramidon suppressed both the SFR and the increase in [Na(+)](i). The SFR and the increase in [Na(+)](i) after stretch were both present in muscles with their endothelium (vascular and endocardial) made functionally inactive by Triton X-100. In these muscles, phosphoramidon also suppressed the SFR and the increase in [Na(+)](i). The data provide evidence that the last step of the autocrine-paracrine mechanism leading to the SFR to stretch is Ca(2+) entry through the reverse mode of Na(+)-Ca(2+) exchange.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.