Abstract
Reverse microemulsion method was implemented to synthesize a CuO/γ-Al2O3 catalyst (18 wt % Cu) with a specific surface area (SSA) of 328 m2/g (after calcination at 400 °C). Catalytic performance was evaluated in the range of temperatures and space velocities (300-600 °C and 10,000-200,000 mL/(g h)). The catalyst was 100% selective to CO generation while attaining a nearly equilibrium CO2 conversion at 500 °C (ca. 50% at 10,000 mL/(g h) and H2/CO2 = 4). Despite the initial reduction of surface area under the reaction conditions, the reduced Cu/γ-Al2O3 catalyst demonstrated a stable performance for 80 h on stream, attaining a nearly equilibrium CO2 conversion at 600 °C (ca. 60% at 60,000 mL/(g h) and H2/CO2 = 4). The selectivity to CO generation remained complete during the stability test, and no significant carbon deposition was detected.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.