Abstract

High surface area cerium oxide was synthesized via the reverse microemulsion method and assessed for CO2 reduction to CO via reverse water gas shift. The resulted ceria nanoparticles (ca. 4 nm) were 100% selective to CO formation, while attaining a nearly equilibrium CO2 conversion at 600 °C. As compared to ceria synthesized by wet precipitation, the reverse microemulsion-synthesized ceria exhibited enhanced surface stability and a more stable catalytic performance (declining from 63% to 50% over 100 h on stream). No significant carbon formation was detected and a relatively small decline in conversion was related to the specific surface area reduction induced by the growth of ceria nanoparticles under the reaction conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.