Abstract

In order to use reverse micellar solutions successfully for the separation of proteins, good methods are needed to recover the biomolecules into an aqueous environment after solubilization into organic micellar media. Usually the recovery is accomplished by equilibrating the protein-loaded reverse micellar solution with a water phase containing an appropriate salt (back-transfer). In this article we describe an alternative "back extraction" procedure which is based on the addition of silica to the protein-containing reverse micellar solution. In this way, the water is stripped from the reverse micellar solution. [i.e., bis(2-ethylhexyl) sodium sulfosuccinate (AOT)/isooctane/water] and the proteins adsorb to the silica particles. The adsorption process is shown to be practically quantitative. The subsequent recovery of the proteins form the silica into an aqueous solution turns out to be most efficient at alkaline pH (pH 8); 60-80 of the total protein (alpha-chymotrypsin or trypsin) could be recovered. The specific enzyme activity at the end of the whole cycle can be as high as 80-100%. The procedure is applied also for the back extraction from micellar solutions in which, instead of AOT, a biocompatible surfactant such as a synthetic short-chain lecithin was used. It is shown that the recovery of a alpha-chymotrypsin and trypsin is also achievable under these conditions in quite good yield and under good maintenance of the enzyme's catalytic activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.