Abstract

Microalgal biotechnology offers a promising platform for the sustainable production of diverse renewable bioactive compounds. The key distinction from other microbial bioprocesses lies in the critical role that light plays in cultures, as it serves as a source of environmental information to control metabolic processes. Therefore, we can use these criteria to design a bioprocess that aims to stimulate the accumulation of target molecules by controlling light exposure. We study the effect on biochemical and photobiological responses of Golenkinia brevispicula FAUBA-3 to the exposition of different spectral irradiances (specifically, high-fluence PAR of narrow yellow spectrum complemented with low intensity of monochromatic radiations of red, blue, and UV-A) under prestress and salinity stress conditions. High light (HL) intensity coupled to salinity stress affected the photosynthetic activity and photoprotection mechanisms as shown by maximal quantum yield (Fv/Fm) and non-photochemical quenching (NPQmax) reduction, respectively. HL treatments combined with the proper dose of UV-A radiation under salinity stress induced the highest carotenoid content (2.75 mg g dry weight [DW]- 1) composed mainly of lutein and β-carotene, and the highest lipid accumulation (35.3% DW) with the highest polyunsaturated fatty acid content (alpha-linolenic acid (C18:3) and linoleic acid (C18:2)). Our study can guide the strategies for commercial indoor production of G. brevispicula for high-value metabolites.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.