Abstract

An entirely plasmid-based reverse genetics system for animal rotavirus was established very recently. We improved the reverse genetics system to generate recombinant rotavirus by transfecting only 11 T7 plasmids for its 11 genes under the condition of increasing the ratio (3- or 5-fold) of the cDNA plasmids for NSP2 and NSP5 genes (11-plasmid system). Utilizing this highly efficient system, we engineered the first infectious recombinant rotaviruses harboring fluorescent (EGFP and mCherry) protein genes. In addition to these recombinant animal viruses, the first infectious recombinant human rotavirus (strain KU (G1P[8])) was also generated with the 11-plasmid system with some modifications. The availability of recombinant human rotaviruses will provide a genetic platform for a better understanding of the replication, pathogenicity, and other biological characteristics of this medically important virus and enable the rational development of next-generation human rotavirus vaccines.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call