Abstract

A threshold reverse bias of ∼21 V was observed leading to a sharp increase in the gate current of AlGaN/GaN high electron mobility transistors biased at low source-drain voltage (5 V). The gate current increases by one to two orders of magnitude at this bias, corresponding to an electric field strength around 1.8 MV cm−1. The gate current increased by roughly five orders of magnitude after step-stressing the gate bias from 10 to 42 V in 1 V increments for 1 min at each bias. The drain current was also decreased by ∼20% after this step-stress cycle. The photoluminescence and electroluminescence intensity from the semiconductor is decreased along the periphery of the gate region after stressing and transmission electron microscopy shows a thin native oxide layer under the gate and this disappears as the gate metal reacts with the underlying AlGaN.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.