Abstract
Properly-regulated inflammation is central to homeostasis. Traumatic injury, hemorrhagic shock, septic shock, and other injury-related processes such as wound healing are associated with dysregulated inflammation. Like many biological processes, inflammation is a dynamic, complex system whose function, like that of an analog clock, cannot be discerned simply from a laundry list of its parts (data). The advent of multiplexed platforms for gathering biological data, while providing an unprecedented level of detailed information about the inflammatory response, has paradoxically also proven to be overwhelming. This problem is especially acute when the datasets involve time courses, since typical statistical analyses and data-driven modeling are geared towards single time points. Various groups have addressed this problem using dynamic approaches to data-driven and mechanistic computational modeling. These modeling tools can be thought of as the "gears" and "hands" of the "clock," and have led to insights regarding principal drivers, dynamic networks, feedbacks, and regulatory switches that characterize and perhaps regulate the inflammatory response. In parallel, mechanistic computational models have given an abstracted sense of how the inflammatory "clock" works, leading to in silico models of critically ill individuals and populations. Integrating data-driven and mechanistic modeling may point the way to a rational "resetting" of inflammation via model-driven precision medicine.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.