Abstract

Inflammation can drive both homeostasis and disease via dynamic, multiscale processes. The inflammatory response can be studied using multiplexed platforms, but there is no straightforward means by which to deal with the consequent “data deluge” in order to glean basic insights and clinically useful applications. Systems approaches, including data-driven and mechanistic computational modeling, have been employed in order to study the acute inflammatory response in the settings of trauma/hemorrhage and sepsis. Through combined data-driven and mechanistic modeling based on such “meso-dimensional” datasets, computational models of acute inflammation applicable to multiple preclinical species as well as humans were generated. A key hypothesis derived from these studies is that inflammation may be regulated via positive feedback loops that control switching between beneficial and detrimental inflammatory responses. Self-resolving inflammation may occur when specific signals feedback in a positive fashion to drive anti-inflammatory responses, while proinflammatory signals remain below certain thresholds. In contrast, self-amplifying, detrimental inflammation may occur when different signals feedback in a positive fashion to drive proinflammatory responses, setting in motion the positive feedback loop of inflammation → tissue damage/dysfunction → inflammation driven by damage-associated molecular pattern molecules. These insights may drive a future generation of targeted, personalized therapies for acute inflammation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call