Abstract

The reduction of the asymmetry in the plasma sheath voltages of a cylindrical coaxial capacitively coupled discharge is crucial for efficient surface modification of the inner surfaces of concave three-dimensional structures, including superconducting radio frequency cavities. One critical asymmetry effect is the negative dc self-bias, formed across the inner electrode plasma sheath due to its lower surface area compared to the outer electrode. The effect on the self-bias potential with the surface enhancement by geometric modification on the inner electrode structure is studied. The shapes of the inner electrodes are chosen as cylindrical tube, large and small pitch bellows, and disk-loaded corrugated structure (DLCS). The dc self-bias measurements for all these shapes were taken at different process parameters in Ar/Cl2 discharge. The reversal of the negative dc self-bias potential to become positive for a DLCS inner electrode was observed and the best etch rate is achieved due to the reduction in plasma asymmetry.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call